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TABLE 1I
CHARACTERISTICS OF THE HIGH-POWER FET AMPLIFIER

Frequency 6.2 GHz
Output Power 30.2 dBm
Gain 26,2 dB

3 dB Bandwidth 200 MHz
DC iInput Power 4,74 watt
Efficiency 22 %
AM-PM at P=+30 dBm 1.2 deg/dB
Noise Figure 8 4B
gzdpgi‘ggrdix Distortion 31.5 dB

IV. CoNcLUsION

A four-stage GaAs MESFET power amplifier capable of deliver-
ing 1-W output power with 26-dB gain has been discussed.
This amplifier was developed for a microwave FM radio relay.
The third-order intermodulation product of this amplifier
chain was 31.5 dB below the fundamental and the power
efficiency was 22 percent.
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Feedback Effects in the GaAs MESFET Model
GEORGE D. VENDELIN

Abstract—GaAs MESFET models correctly predict a positive feed-
back conductance. The effect of common-lead inductance on y;, using
computer modeling techniques is examined. Experimental data are also
included which indicate that the common-lead inductance of about 0.06 nH
cannot be omitted from the model in order to accurately predict the feed-
back conductance.

Several authors [1}-[3] have reported the existence of a
positive feedback conductance term in both MosrFer and
MEesFeT devices. This result is usually observed by calculating
g12 = Re (¥1,), which is positive for a negative resistance
between gate and drain. Both Johnson [1] and Dawson [3]
have shown that a positive g;, may be explained by an internal
capacitance between drain and channel interacting with input
capacitance and common-lead resistance, which produces a
positive g, , proportional to 2.
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Fig. 1. GaAs MEsFeT Model (1-ym gate length). Fairchild element values:

ig.
R, =11Q, Rop =400 Q, R, = 237 Q, R, = 7.28 Q, C, = 0.25 pF,
Co = 0.04 pF, C; = 0.007 pF, Ly = 0.059 nH, L, = Lo = 0.3 nH,
Imo = 20mS, 7o = 5 ps.

In this letter a slightly different chip model [4], which includes
inductances at all three terminals, will be used to calculate
feedback effects. The importance of including common-lead
inductance will become apparent since g, increases significantly
due to this element. Experimental data for GaAs MESFET chips
are also included in order to verify the validity of the model.

The circuit model [4] used for the GaAs MESFET is given in
Fig. 1. This model is slightly different from Dawson’s because
the drain capacitance C, is returned to the common-source
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Fig. 2.y, versus frequency for 1-um gate GaAs MESFET. (a) g12 versus
frequency. (b) b,, versus frequency.

resistor R rather than directly to the input capacitance C.
Also, Ry, 7, and the three terminal inductances are included in
this model. This equivalent circuit has been modeled on a
computer terminal [5] using both COMPACT and SPEEDY?2
to determine the feedback effects in the GaAs MESFET model.

The feedback elements in Fig. 1 are R, L, R s and C,. From
computer studies of this model, the terms which increase g,
are R, L;, C;, and C,. All other elements in the model decrease
the positive g;,.

Sigg [6] has derived a formula for y,, including both in-

ductance and resistance terms in the common-lead branch.
For the normal GaAs MesFer model, this formula reduces to
Dawson’s result when Z, = R,:

912 = ©0*R,C,C,
bll >~ “‘C()Cf.

A typical plot of y;, versus frequency is given in Fig. 2 for
an experimental 1-um gate GaAs MEsFeT chip from Fairchild.
Both experimental and equivalent circuit data are plotted, which
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Fig.3. y;. versus frequency with variable common-lead inductance. (a) g2
versus frequency. (b) b, versus frequency.

indicate that g,, turns negative in Ku band. The effect of com-
mon-lead inductance on y,, can be seen clearly in Fig. 3, which
gives the model data for the Fairchild chip as a function of
common-lead inductance. By comparing Figs. 2 and 3, the L,
term is needed to fit the measured g;,.

The effect of device geometry has also been computed from
experimental data. Increasing either gate length or gate width
increases the g,,, but b,, appears to be essentially independent
of geometry.

The data reported by Liechti [7] for both single- and dual-gate
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MESFET’s at 10 GHz have also been converted to y parameters
with the following feedback result:

Single Gate Dual Gate
J12 0.382 mS 0.204 mS
bys —0.694 mS —0.151 mS

The feedback is considerably reduced for the dual-gate device.

A positive g;, has been clearly demonstrated for GaAs
MESFET’s up to Ku band. This result is unique for FET’s since
microwave bipolar transistors normally have a negative g, ,.
From computer studies of the present GaAs MESFET model, the
feedback inductance can be shown to increase stability (k)
below about 8 GHz but decrease stability above 8 GHz. In
addition, the maximum available gain or maximum stable gain
is reduced by all of the feedback elements. Since the gain is
usually reduced, it is confusing to refer to the feedback inductance
or resistance as “regenerative” [3]. These results depend upon
the particular model parameters of the GaAs MEesFET. In addition,
packaged MEsSFeT’s will behave quite differently due to additional
feedback elements. In general, all feedback elements should be
avoided since they normally lead to a reduction in gain over a
broad frequency range regardless of the effect on g, .
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The GaAs MESFET as a Pulse Regenerator in the Gigabit
per Second Range

H. BENEKING anND W. FILENSKY

Abstract—Regeneration and amplification of fast pulses in the 50-ps
range have been established using GaAs MESFET’s under switching
conditions. Sharpening factors, #,,.//,,,,, of 3 and voltage amplification
factors of 2 at 50 Q have been achieved for output pulses up to 100 mA.
The sharpening effect is caused mainly by the voltage-dependent gate
capacitance which varies with the input pulse amplitude.

Using a GaAs MEeSFeT under pinch-off conditions, any input
pulse high enough may drive the FET into the active region.
The turn-on time of the drain current is dependent on 1) the
input time constant, 2) the voltage-dependent transconductance,
and 3) the slope of the input pulse.

Because of the voltage-dependent gate capacitance the input
time constant varies with the input signal. The simplified
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